\(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx\) [1178]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 83 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx=-\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 C \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

-2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*C*(cos(1/2*d*
x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*C*sin(d*x+c)/d/cos(d*x+c)^(3/
2)+2*B*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {4149, 2827, 2716, 2720, 2719} \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx=-\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 C \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[Cos[c + d*x]],x]

[Out]

(-2*B*EllipticE[(c + d*x)/2, 2])/d + (2*C*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*C*Sin[c + d*x])/(3*d*Cos[c + d
*x]^(3/2)) + (2*B*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 4149

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)
]^2), x_Symbol] :> Dist[b^2, Int[(b*Cos[e + f*x])^(m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; F
reeQ[{b, e, f, A, B, C, m}, x] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {C+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = B \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+C \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 C \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-B \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} C \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 C \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.63 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.78 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\frac {-6 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {2 (C+3 B \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}}{3 d} \]

[In]

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[Cos[c + d*x]],x]

[Out]

(-6*B*EllipticE[(c + d*x)/2, 2] + 2*C*EllipticF[(c + d*x)/2, 2] + (2*(C + 3*B*Cos[c + d*x])*Sin[c + d*x])/Cos[
c + d*x]^(3/2))/(3*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(395\) vs. \(2(127)=254\).

Time = 1.67 (sec) , antiderivative size = 396, normalized size of antiderivative = 4.77

method result size
default \(-\frac {2 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-6 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 C \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-6 B \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(396\)

[In]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+
1)/sin(1/2*d*x+1/2*c)^3*(12*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-2*C*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-6*B*sin(1/
2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(
cos(1/2*d*x+1/2*c),2^(1/2))-2*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2
)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 175, normalized size of antiderivative = 2.11 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\frac {-i \, \sqrt {2} C \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} C \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} B \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} B \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, B \cos \left (d x + c\right ) + C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/3*(-I*sqrt(2)*C*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*C*cos(d
*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*B*cos(d*x + c)^2*weierstrass
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*B*cos(d*x + c)^2*weierstr
assZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*B*cos(d*x + c) + C)*sqrt(cos(
d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)

Sympy [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)/sqrt(cos(c + d*x)), x)

Maxima [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/sqrt(cos(d*x + c)), x)

Mupad [B] (verification not implemented)

Time = 18.07 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.05 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\frac {2\,B\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/cos(c + d*x)^(1/2),x)

[Out]

(2*B*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) +
 (2*C*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)
)